
64

ISSN 1392–0758 SOCIAL SCIENCES. 2014. Nr. 3 (85)

Hybrid Approach in Project Management – Mixing Capability Maturity Model

Integration with Agile Practices

Artur Ziółkowski

Gdańsk University of Technology

Narutowicza 11/12, 80-233 Gdansk, Poland

Tomasz Deręgowski

Acxiom Corporation

Wołoska 3, 02-675 Warszawa, Poland

 http://dx.doi.org/10.5755/j01.ss.85.3.8416

Abstract

This paper introduces an idea of hybrid approach

in managing software development projects. The main

goal of this research is to prove that it is possible to

design a consistent method for managing software

development projects which is based on different

corporate standards and methods. The authors also

want to show that this new hybrid approach is

beneficial for IT organization, triggers synergy effects

and brings software development process to a higher

level, impossible to achieve when methodologies and

standards are used separately. This paper discusses an

exemplary implementation of hybrid management

process which is based on CMMI and Scrum.

Keywords: project management, standards,

methodologies, CMMI, Agile, Scrum.

Introduction

The software development process is implemented by

all types of organizations, both software houses and

organization which develop software to support their main

business areas (e.g. banks). Over the past few years

companies developed many different methodologies for

managing software development processes. Some of them

became corporate standards and are widely used in IT

industry.

Based on the level of complexity, software

development methodologies could be classified into two

main categories: heavy (traditional) and light (agile)

(Philips, 2007; McMahon, 2010). Heavy methodologies

are prescriptive, with numerous rules to follow, many roles

defined and artefact-intensive. They assume that a formal,

detailed process which precisely defines all aspects of

software development project is the key factor

guaranteeing the success of a project (Parth, 2007). The

success of a project is understood as delivering a product

within the scope defined at the beginning of the project,

within the budget and on schedule. Good examples of

heavy methodologies are PMI, PRINCE2 and RUP (see

Bergstom, 2003; Kruchten, 2004; PMI, 2008; PRINCE2,

2009).

Light methodologies are adaptive with fewer rules to

follow. They are based on synergy and self-organizing

teams. They assume that adapting changes in client’s

requirements (Wiegers, 2003) during the whole project is a

guaranty of project success. It is not important to deliver a

project on schedule, within budget and scope. A project is

successful when at the end of it stakeholders receive the

product they need. The most popular of light

methodologies are Scrum, Kanban, XP and Lean.

In addition to using software development

methodologies, many companies introduce process

improvement programmes in order to optimize

organization underlying processes and become more

efficient (Bass, 2003). These programs define which

process and why should be applied to successful

organization, but they do not define how they should be

implemented. Examples of such standards are CMMI, ITIL

and TOGAF.

The choice of method for managing IT processes

which corresponds to organization’s needs and is adequate

to its unique culture is a strategic and one of the most

important decisions to be made by an IT organization. It

impacts the way organization works and would be one of

the organization’s key success factors. When choosing a

method of managing IT organization, several factors need

to be taken into consideration:

 Human factor represented by the client and the team

providing IT solution for the client.

 Technological factor represented by all technological

aspects related to product development.

 Communicational aspect related to transforming

client expectations and needs into product

functionalities.

In addition to the above factors, which have direct

impact on the project, there are also factors that shape the

project environment in an indirect way. Management of an

organization, external suppliers, legal conditions, etc. –

http://dx.doi.org/10.5755/j01.ss.85.3.8416

 A. Ziółkowski, T. Deręgowski. Hybrid Approach in Project

Social Sciences / Management – Mixing Capability Maturity Model Integration

Socialiniai mokslai. 2014. Nr. 3 (85) with Agile Practices

65

they all have an impact on project’s course and should be

taken into consideration.

All these factors shape a unique, multifaceted

environment dependant on many factors with non-

predictable behaviour. Methodologies and standard

processes are designed to bring order into this complex and

shaky environment and minimize all types of risks.

Because of its complexity and multidimensionality,

every IT project is unique. The authors’ experience shows

that it is impossible to develop a universal method for

managing software projects which would be suitable for

different projects with diverse specificity. Management of

software development processes is part of situational

management (Griffin, 2012) (situational approach to

management). A more suitable approach is to define a

unique set of rules and procedures for each newly started

project. These rules should be adapted from all type of

methodologies, both heavy and light.

The solution suggested by authors is in contradiction

to the standards of the IT industry. Most companies

introduce single methodology in whole company and use it

to manage all types of projects. What is more, many

organizations treat traditional and Agile methodologies as

mutually exclusive and assume that it is impossible to use

both of them in the same organization (Schwaber, 2002).

Such an approach is counterproductive and decreases

origination effectiveness.

1. The uniqueness of projects and management

standards

There are many examples of projects which used

traditional process approach (e.g., CMMI) and were

successful. There are also many examples of projects

which were successful in using Agile techniques.

According to situational management principles, the

specificity of particular projects (Schwalbe, 2010), their

entropy and complexity determine which approach is more

suitable.

The authors postulate the elaboration of a new,

adaptive and situational model of IT organization which

assumes a dynamic creation of unique management

process for each newly established project. This new

approach should be based on a variety of IT standards,

both traditional and Agile. It would enable achieving a

synergy effect.

Decisions on how to implement each part of software

development process for a particular project should be

based on project’s specificity. A unique set of project

parameters like type of the client, size of development

team, experience in particular technology and, in

particular, type of the product should be taken into

consideration.

2. Existing methods for managing the process of

software development

As mentioned above, two approaches have dominated

the methods of software development management: heavy

(traditional) and light (agile). In further research the

authors concentrate on two methodologies: CMMI

(Capability Maturity Model Integration), which is often

treated as a representative of heavy approach and Scrum, a

sample Agile approach. The authors have decided to

concentrate on these two methodologies because of their

experience in introducing Scrum practices in hierarchical

and structural CMMI organization.

2.1. Capability Maturity Model Integration as an

example of traditional approach in software

development management

CMMI is a process improvement method which allows

integrating all process and procedures existing in an

organization and identifying potential gaps. The CMMI

model was founded by the United States Department of

Defence (DOD) and is implemented mainly in companies

which work for army, governmental agencies or large

corporations. In such types of organizations the most

important factors are confidentiality, security and stability,

rather than the price or ability to adapt to client’s changing

needs. CMMI is usually implemented in a high-cost of

failure domain.

The CMMI model is often used to assess the maturity

of the process implemented in the organization. CMMI

model defines five levels of maturity (Chrissis, 2011):

 Initial (Level 1) – on initial level processes are

chaotic and undocumented. Success in such an

environment is still possible, but mainly because of

team members’ knowledge and their dedication.

What is more, the success will be hard to repeat.

 Managed (Level 2) – key processes are planned and

run according to established policies (they are

monitored, controlled, they results are reviewed,

adherence to process description is evaluated).

Depending on the project, processes definitions and

descriptions differ. CMMI defines seven Process

Areas that need to be implemented in an organization

so it may be considered as Managed in CMMI terms.

 Defined (Level 3) – all projects in an organization use

the same set of standards. In comparison to Managed

Maturity level, scope of defined processes is wider

and their description is more detailed. To consider

organization as Defined it needs to be Managed and

have implemented additional eleven Process Areas.

 Quantitatively Managed (Level 4) – processes are

measured and controlled. The data and metrics related

to processes performance are collected and analysed.

Thanks to historical estimates, quality and

performance metrics, it is possible to predict process

performance. To consider organization as

Quantitatively Managed it needs to be Managed,

Defined and have implemented two additional

Process Areas.

 Optimizing (Level 5) – Organization is

continuously improving its performance through technical

innovations, defect prevention and processes review and

assessments. To consider organization as Optimizing it

needs to be Managed, Defined and Quantitatively

 A. Ziółkowski, T. Deręgowski. Hybrid Approach in Project

Social Sciences / Management – Mixing Capability Maturity Model Integration

Socialiniai mokslai. 2014. Nr. 3 (85) with Agile Practices

66

Managed and have implemented additional two Process

Areas.

CMMI defines which processes should be

implemented and why but it does not define how they

should be implemented. Thus iterative approach and

waterfall life cycle are equally consistent with CMMI.

Identifying CMMI with waterfall approach is due to its

origins (CMMI was founded by DOD) and to the way it is

usually implemented. Compliance to CMMI is often one of

the requirements in contracts held by army, government

agencies or multinational corporations. Usually this is the

only reason why companies implement CMMI – they want

to tender for a contract. They are not interested in raising

the quality of their processes. In such cases organization

introduces standard, generic and usually waterfall

processes which are not adjusted to processes and

procedures already existing in an organization. Such

processes are not optimal; sometimes they can even

worsen organization’s performance. They are implemented

in a standard manner because they increase the probability

of passing SCAMPI appraisal.

2.2. Scrum – an Agile Project Management

approach to Software Development

Scrum is one of the most popular and well known

Agile methodologies. Many Scrum elements such as

iterations, incremental software development, self-

managing teams and adaptation to changing requirements

are common to other Agile methodologies (Sutherland,

2010; Schwaber, 2011).

Iterative approach means that the duration of the

project is divided into parts called iterations or Sprints.

Every Sprint is organized in the same way: at the

beginning of the Sprint the team plans which features will

be developed during the Sprint; then team members

develop these features and at the end of the Sprint the team

reviews the features created during the Sprint with clients

and get their feedback. Sprint usually lasts from two to

four weeks.

A product is created incrementally, each Sprint we

deliver a complete set of functionalities accepted by the

client. Scrum is adaptive because it lets the team react to

constantly changing requirements, market situation,

changes in project team and others. A modification of

project plan and project scope does not require contract

renegotiation; changes are adapted on an ongoing basis.

The described features of Scrum have one common

goal: to make cooperation with client smoother. Agile

methodologies treat the customer as a partner, as member

of the team. The customer actively participates in

development process and can impact the course of the

project throughout its duration.

2.3. Differences between CMMI and Scrum

Scrum and CMMI represents two different approaches

to Software development. CMMI is prescriptive, defines

many rules to follow, processes are well defined and

should be implemented by the book. Scrum and other

Agile methodologies are adaptive; they are sceptical on

process definition and are based on common sense rather

than on strict, detailed processes definitions. Agile

methods value people and interactions between them over

processes and tools.

Because of the importance of processes, CMMI

organizations are usually heavy documented, whereas in

Scrum we distinguish several types of documents which

usually contain graphical representation of information

rather than plain text.

In CMMI organization management and formal

corporate structure plays important role, whereas Scrum

teams prefer flat structure, self-organizing teams and

authority based rather on skills and experience than on

formal, corporate titles. Traditional managers in Scrum

organizations try to coach the teams; they do not manage

them in a traditional way. Their main focus is on removing

impediments and eliminating barriers to progress.

Also the way in which CMMI and Scrum are

implemented differs. Usually introducing CMMI is a top-

down initiative launched by higher management, whereas

introducing Scrum is usually a grass root effort inspired by

engineers and techies.

These differences often lead to an assumption that

CMMI and Scrum are self-excluding approaches.

According to authors’ knowledge and experience, this is

not true. Both CMMI and Scrum have consistent goals:

higher quality, happier customer, shorter time to market.

Both approaches can be extremely effective and benefit

project and organization performance.

3. Overcoming CMMI and Scrum shortcomings

CMMI DEV was implemented on highest maturity

level by many successful companies such as Samsung, the

Boeing Company, HP Enterprise Services, IBM Global

Business Services, Lockheed Martin, and others (CMMI

Institute, 2013). In Poland CMMI DEV v1.3 was

introduced in companies such as Asseco Poland SA, Atos

Belux, Alcatel-Lucent, HSBC Global Technology Centre

Poland and HIS Global (CMMI Institute, 2013).

Scrum was implemented by major IT companies such

as Google, Yahoo, Microsoft, Facebook, Adobe, Nokia,

Siemens, BBC, CNN, General Electric, Bank of America,

and Novell (Google, 2013).

They are many examples of successful projects which

were managed with CMMI or Scrum. This does not change

the fact that there are many well know shortcomings of

both methodologies. What is crucial in the context of this

article, many CMMI weaknesses can be overcome by

using some Scrum practices. Also, Scrum can benefit from

using some of the practices described in the CMMI model.

Complementarity of Scrum and CMMI can be achieved

through their parallel implementation in the same

organization.

Not only software houses, but also their clients, can

benefit from this new approach. On the one hand, clients

expect that vendor organization will have implemented

CMMI. From the client’s perspective it should guarantee

high quality of development process which will result in

 A. Ziółkowski, T. Deręgowski. Hybrid Approach in Project

Social Sciences / Management – Mixing Capability Maturity Model Integration

Socialiniai mokslai. 2014. Nr. 3 (85) with Agile Practices

67

high quality of the product. On the other hand, customers

want to participate in the development process on daily

basis. They request direct impact on developed product and

ability to introduce new requirements and change existing

ones at every stage of the process.

Mixing CMMI and Agile into one process may help

satisfy both client’s needs and create process which is

mature and dynamic at the same time. Due to this, we can

achieve a synergy effect and build a flexible and Agile

process on a solid CMMI foundation, create a mix of

models and methods, with selected techniques adopted

from CMMI and Scrum, to troubleshoot specific

challenges.

3.1. Overcoming CMMI drawbacks with

Scrum

CMMI is defined on high level of abstraction. Sixteen

out of twenty-two CMMI for Development Process Areas

are common to other CMMI models (CMM for Services

and CMMI for Acquisition). They are defined without

many details related to software development process

because they may be implemented for different purposes in

varied environments. Definitions of many CMMI Process

Areas contain statements such as ‘use proper technique’ or

‘use proper tool’ without naming them. CMMI authors

intentionally pass the decision to choose proper tools and

techniques to the team which is introducing CMMI. It is

also important that CMMI authors admit that many good

practices have been omitted because they did not fit the

general, high-level, CMMI concept.

As noted in Chapter 2.1, CMMI is process-agnostic: it

defines what should be done and why but it does not say

how. The way how to implement a particular Process Area

(or its parts) can be taken from any methodology. In this

article the authors will concentrate on filling CMMI gaps

with Scrum tools and techniques.

A good example of such filling may be CMMI

requirement to control the progress of work by Project

Manager. This requirement is defined in Project

Monitoring and Control (PMC) Process Area. The main

objective of PMC Process Area is to monitor project

progress and check its compliance with the schedule.

Anomalies and inconsistencies with the plan should be

detected and proper corrective actions should be taken.

Nowadays projects depend upon engineers with

specialized, technical skills. Project managers, even with

technical background, will never have sufficient

knowledge and experience compared to the expertise of the

members of the teams they lead. In consequence, they are

not able to effectively track the progress of technical tasks.

This problem was pointed out by Peter Drucker (1957), the

leading management thinker of the twentieth century. He

believed that it is not possible to directly control the work

of knowledge workers – engineers with specialized,

technical skills. Knowledge workers cannot be managed in

traditional manner, they must manage themselves.

CMMI does not define appropriate mechanisms and

tools that allow knowledge workers manage themselves

while reporting progress to higher management. Such tools

could be found among Agile practices. Scrum defines the

concept of self-organizing teams where team members

assign tasks themselves, control the progress of work, and

report statuses on daily basis. It also gives appropriate

tools which allows putting the concept into practice. Sprint

Planning Meetings and Daily Scrum Meetings let

practitioners plan work, assign tasks and track the progress

of work on a daily basis.

Project Monitoring and Control is not the only Process

Area described by CMMI which lacks implementation

details. Thus, to implement CMMI Quantitative Project

Management Process Area, we can use one of Agile

metrics – velocity – which measures the rate at which the

team performs work and how this rate is changing over

time.

Another example may be CMMI Process Area

Organizational Performance Management and Scrum

Retrospective Meeting. A Scrum Retrospective Meeting

may be used to gather information regarding problems a

team is struggling with and about potential improvements

which may be introduced. These types of activities are

required by CMMI Organizational Performance

Management Process Area.

The above examples are part of many examples which

show that goals set by CMMI could be achieved with

methods and tools adopted from Scrum. One of the most

spectacular examples of introducing Scrum in CMMI

organization is implementation made my Jeff Sutherland in

Dutch company Systematic Software Engineering. Mixing

Scrum and CMMI within a single organization gave

spectacular results:

 Productivity in large teams was increased by 100 %,

 The cost of the project was decreased by 50 %,

 Average estimates inaccuracy level was 10 %,

 The rate of project completion within budget and

schedule was 92 % (Sutherland, 2010).

After introducing Scrum, the status of CMMI Level 5

organization was preserved.

Scrum can give CMMI teams much more than just a

way to implement some of CMMI practices. Scrum can

make CMMI more innovative and keep it up to date with

new trends in IT industry. The process of developing

CMMI is formal and it takes years to release new version

of CMMI model. CMMI is a successor of CMM model

which was developed from 1987 until 1997. The first

CMMI model Version 1.1 was released in 2002. CMMI

Version 1.2 was released in 2006 and CMMI Version 1.3

in 2010. CMMI is evolving, but it does not evolve quickly

enough to keep up with a rapidly changing IT industry.

This problem may be overcome by introducing some of

Agile practices to support CMMI goals. Agile community

is much more active and innovative and adopts new trends

very quickly. Adding some of Agile practices to CMMI

environment can help it adapt most recent trends. A good

example of such use of Agile tools in CMMI environment

can be introducing Extreme Programming (XP) practices.

By definition CMMI for Development is designated for IT

teams. Unfortunately, CMMI lacks engineering practices

that would allow development teams produce code faster

and more efficient, with higher quality and less number of

 A. Ziółkowski, T. Deręgowski. Hybrid Approach in Project

Social Sciences / Management – Mixing Capability Maturity Model Integration

Socialiniai mokslai. 2014. Nr. 3 (85) with Agile Practices

68

defects. Such practices are a part of XP, software

development methodology which is intended to increase

the quality of software development process and software

products (Beck, 2004). Example of XP practices are Pair

Programming, Test Driven Development, Continuous

Integration, Small and Constant Releases, Coding

Standards, Collective Code Ownership and more.

Introducing some of these practices could significantly

increase efficiency and quality of developed code which

are CMMI goals.

Being innovative also means experiments.

Development teams should test different approaches,

processes and metrics and choose only those which

correspond to the need of a particular team and particular

project. Agile mindset encourages experimentation which

cannot be said about the CMMI model. CMMI teams often

do not want to try new things because they are afraid of

losing SCAMPI appraisal. Agile can help and encourage

CMMI to iteratively introduce improvements. Introducing

improvements one by one, not all at the same time has

many advantages. The most important is the opportunity to

measure how the process has changed after introducing a

particular practice. If we introduce several practices at the

same time, it is hard to define which of them has changed

the process performance. When a single practice is

introduced, we can easily measure its impact on the

process. Sequential introduction of improvements has

another important advantage. It reduces resistance and fear

of change. Innovations are isolated, we change single

process element, not the process as a whole. We can also

use iterative approach when introducing CMMI in a new

company. Introducing CMMI does not have to indicate

revolution. Due to the fact that Process Areas are

introduced iteratively, the team has a chance to get familiar

with particular Process Area before introducing others.

The CMMI organization often has problems with

engaging clients in daily project work. Such engagement is

especially important in today’s globalized world where

more and more contracts are executed by companies from

different countries, working on different continents.

Building trust in such an environment is not easy and

traditional CMMI approach where client is not a direct

contributor to the evolution of product is not sufficient.

Clients do not want to rely on contract relationship; they

want to be a part of development process and shape the

product on daily basis. Such relationship can be easily

implemented with some of Scrum practices like Sprint,

Sprint Planning Meeting and Sprint Review Meeting. In

Scrum clients are active members of the team. They have a

direct impact on priorities and requirements, and their

feedback is collected and adapted on daily basis.

The last but not the least benefit that CMMI teams can

get from agile approach is simplicity. Quite often CMMI

documentation is overwhelming. The average CMMI

Level 3 SCAMPI Appraisal examines over 400 document

types and over 1000 artefacts (Dalton, 2011). Agile is not

questioning the sense of writing documentation but it

requests writing documents only when they are read by

someone. The average Scrum project produces 39 artefacts

(Dalton, 2011). Using Agile experience can encourage

CMMI teams to reduce the number of held documents and

treat as documentation other, not obvious artefacts like

code comments, digital photos of Scrum board, whiteboard

drawings, etc.

Using agile approach in documentation also means

being minimalistic, pragmatic, creating optimal documents

and documents templates and, what is more important,

improving them all the time. Policy documents may be

brief, not longer than one page, and still contain all

important information. Same about procedures, meeting

agendas, and meeting notes – they should be short and

contain as little detail as possible. Before adding all the

details by default organization should rather wait for

people to ask for such details. Keeping documentation

short increases the probability that it will be used by

people.

As seen in the above examples, Scrum and other agile

practices can support CMMI on many different levels.

What is crucial, Scrum values are not in contradiction with

the CMMI model. On the contrary, Scrum supports CMMI

goals, can help implement some Process Areas and make

CMMI more effective and efficient tool.

3.2. Overcoming Scrum drawbacks with

Scrum

In many organizations which have implemented

Scrum, the software development process is reactive. Such

organizations react to most recent client needs but they

quite often miss a longer-term view. Figure 1 shows a

graphical representation of levels of planning in an

organization which develops software.

We distinguish six levels of planning, some of them

are supported by Scrum, some not:

 Day – plan Team work for a single day. This task is

performed by Scrum Master and Team. To track daily

progress, Scrum introduces Daily Stand-up Meeting.

Strategy

Portfolio

Product

Release

Iteration

Day

Figure 1. Level of planning in the organization which creates software

 A. Ziółkowski, T. Deręgowski. Hybrid Approach in Project

Social Sciences / Management – Mixing Capability Maturity Model Integration

Socialiniai mokslai. 2014. Nr. 3 (85) with Agile Practices

69

 Iteration – plan Team work for single iteration (time

period from 2 to 4 weeks). This level of planning is

handled by Scrum Planning Meeting, Scrum Review

Meeting and Scrum Retrospective Meeting.

Product Owner decides which tasks should be

performed during the Sprint, Team decides how much

work it is able to handle during the Sprint.

 Release – release covers several iterations. Product

Owner decides which features should be included in

particular release and prioritizes them appropriately

in Product Backlog.

 Product – all estimated requirements (functional and

non-functional) for the single software product are

collected in Product Backlog. Product Owner via

priorities directs project progress. She chooses which

features and in which order should be implemented.

She also decides about the scope of each feature.

 Portfolio – on the portfolio level, the organization

manages the overall product offering (products and

services) and dependencies between them. Scrum by

definition does not offer tools to manage this level of

planning.

 Strategy – on the strategy level, the company defines

what it wants to be, its strategic goals and visions, the

direction it wants to follow during the next several

years. Scrum by definition does not offer tools to

manage this level of planning.

As shown above, Scrum supports four levels of

planning; two levels (Portfolio and Strategy) are not

backed by Scrum. This gap can be neutralized by some

CMMI practices, especially those defined on the third,

fourth and fifth Maturity Level. On these levels CMMI

looks beyond the needs of a single project. It standardizes

processes and tools so they can be used in different, not

related projects, it helps to measure and improve the

performance of organization as a whole and lets it become

less wasteful and leaner. Such strategic initiatives might

not be profitable from the perspective of single projects.

But when we look at them from the perspective of whole

organization, all its current and future initiatives, such

actions may prove to be extremely beneficial. A project

can learn and benefit from the experience of previous

projects even before it is started. They can be improved

over the time through the experience of many different

projects

CMMI also gives a holistic approach, it does not

concentrate on specific parts of business, and it treats

organization as a coherent whole and tries to addresses all

problems most IT organizations are struggling with.

CMMI defines 22 Process Areas, 54 Goals and 185

Practices. Getting familiar with them can help realize how

many important processes and practices are skipped by

Scrum teams. CMMI Maturity Levels also help define an

order in which missing processes should be introduced.

There are years of experience behind CMMI model; it was

implemented in hundreds of organizations. It gives its

authors unique experience and knowledge which allows

deciding which processes are key to the success of the

project and which may be implemented later, because the

Return of Investment (ROI) would not be so significant.

Removing impediments located within Maturity Level 3

Process Area will probably have higher ROI than

removing impediments from Process Areas defined on

Maturity Levels 4 and 5.

Another important advantage of using some of CMMI

practices in Agile environment is the possibility to

propagate and improve good solutions over the distance of

time. Scrum is mostly oriented at the team and project

level, whereas CMMI provides organizational-level

infrastructure and mechanism to promote reliable solutions

in the whole organizations. Good practices can be

normalized, shared and improved among different teams

and departments. CMMI also helps to define and

standardize definitions of processes which are

implemented in an organization. It helps preserve

information and knowledge over the time and improve

processes. When knowledge is written down and

standardized also on boarding processes for new

associates, it is much more efficient.

What is important, CMMI can help standardize not

only CMMI practices, but also practices derived from

Agile and Lean methodologies. Scrum organizations

perform regularly same activities for different clients and

projects. They carry the same meetings (e.g., Daily Stand-

ups, Sprint Planning, Sprint Retrospective and Sprint

Review Meetings) and use the same artefacts (e.g., Sprint

and Product Backlogs, Burn Down Charts). An

organization which adopted Scrum can benefit from

formalizing Scrum practices. When organizations use

rigorous, well defined and standard processes, it is easier to

retain them during the time of stress. This can help the

team to stick to their standards when there is pressure to

cut corners. This refers to practices and tools derived from

many different sources: CMMI, Scrum, XP and Lean.

Such formalism and discipline can also help to deploy

Agile methods in large development environments, not

only in individual Teams.

4. Conclusions and future work

Both CMMI and Scrum have their shortcomings. The

analysis of existing projects shows that neither of them

guarantees success of the project. The authors of this paper

believe that the use of both approaches in parallel within

the same organization or project may increase the

probability of project success. CMMI and Scrum can

mutually neutralize their limitations and bring software

development process to a higher level, impossible to

achieve when they are used separately.

In future research the authors want to propose a new

approach to managing software development projects. This

new approach, based on CMMI and Scrum, assumes that

for each newly started project unique management process

will be created. This process will be tailored to unique

project needs.

Drawing on project factors such as type of project,

duration, budget, size of the project team etc., proper

CMMI process areas will be chosen. Afterwards, these

process areas will be implemented using agile techniques.

 A. Ziółkowski, T. Deręgowski. Hybrid Approach in Project

Social Sciences / Management – Mixing Capability Maturity Model Integration

Socialiniai mokslai. 2014. Nr. 3 (85) with Agile Practices

70

References

1. Bass, L., Clements, P., & Kazman, R. (2003). Software

Architecture in Practice. Boston: Addison-Wesley.
2. Beck, K., & Andres, C. (2004). Extreme Programming Explained:

Embrace Change (2nd edition). Extreme Programming Explained:

Embrace Change.
3. Bergstom, S., & Reberg, L. (2003). Adopting the Rational Unified

Process: Success with the RUP. Boston: Addison-Wesley

Professional.
4. Chrissis, M.B.,Konrad, M., & Shrum, S. (2011). CMMI for

Development.

5. Dalton, J. (2011). CMMI and Agile - Partners in Driving Radical
Change in Engineering. CMMI and Agile - Partners in Driving

Radical Change in Engineering.

6. Drucker, P. (1957). Landmarks of Tomorrow. Landmarks of
Tomorrow. NY: Harper & Row.

7. Griffin, R. W. (2012). Management. Principles and practices (10th

edition). Insitute CMMI. Published Appraisal Results.
8. Kruchten, P. (2004). The rational unified process : an introduction.

Boston: Addison-Wesley.

9. McMahon, P. E. (2010). Integrating CMMI and Agile
Development: Case Studies and Proven Techniques for Faster

Performance Improvement. Boston: Addison-Wesley Professional.

10. Parth, F., & Snyder, C. (2007). Introduction to IT Project
Management, Management Concepts. Vienna.

11. PMI (2008). A Guide to the Project Management Body of

Knowledge (4th edition). USA.
12. Philips, J. (2007). IT Project management. Helion.

13. PRINCE2® (2009). Managing Successful Projects with

PRINCE2®.
14. Schwaber, K., & Beedle, M. (2002). Agile Software Development

with Scrum. Prentice Hall.

15. Schwaber, K., & Sutherland, J. (2011). SCRUM Guide.

16. Schwalbe, K. (2010). Information technology Project

Management, Course Technology. Boston.

17. Sutherland, J., Carsten Ruseng Jakobsen, C.R., & Johnson, K.
(2010). Scrum and CMMI Level 5: The Magic Potion for Code

Warriors.

18. Wiegers, K. E. (2003). Software requirements (2nd edition).
Washington: Microsoft Press.

A. Ziółkowski, T. Deręgowski

Hibridinė prieiga valdant projektus: Galimybių brandos modelio

integracijos derinimas su „lanksčiomis” praktikomis

Santrauka

Straipsnis pristato hibridinę programinės įrangos kūrimo projektų

prieigą. Ji yra pagrįsta dviem programinės įrangos kūrimo
metodologijomis, kurios paprastai traktuojamos kaip nesuderinamos:

„sunkiosios” metodologijos, pvz., PMI, PRINCE2 ir RUP, ir „lengvosios”

metodologijos, pvz., Scrum, Kanban, XP ir Lean.
„Sunkiosios” metodologijos yra nurodomojo pobūdžio, joms

būdinga daug taisyklių, kurių reikia laikytis, daug apibrėžtų vaidmenų ir

įrankių. Jos numato, kad formalus ir detalus procesas, išsamiai
apibūdinantis visus programinės įrangos kūrimo projekto aspektus, yra

esminis projekto sėkmės garantas. Projekto sėkmė yra suprantama kaip

projekto pradžioje numatyto produkto pateikimas suplanuoto biudžeto ir
laiko rėmų ribose.

„Lengvosios” metodologijos yra adaptyvios ir turi mažiau taisyklių,

jos pagrįstos sinergija ir komandų saviorganizacija. Jos numato, kad
projekto sėkmę lemia nuolatinis projekto metu vykstantis pokyčių

adaptavimas kliento reikalavimams. Nėra svarbu projektą baigti laiku,

laikantis biudžeto ir numatytų ribų. Projektas yra sėkmingas tada, kai jam
pasibaigus suinteresuoti subjektai gauną tą produktą, kurio jiems reikėjo.

Straipsnyje pristatoma koncepcija taip pat pagrįsta gerai žinomomis

proceso tobulinimo programomis. Jos dažnai pradedamos vykdyti

programinę įrangą kuriančiose organizacijose, siekiant optimizuoti ir

efektyvinti fundamentalius organizacijos procesus. Šios programos

apibrėžia procesus, kurie turėtų būti įdiegti sėkmingoje organizacijoje, bet
neapibrėžia diegimo būdo. Tokių standartų pavyzdžiai yra CMMI, ITIL ir

TOGAF.

Yra daug projektų, kurie sėkmingai taikė tradicinę projektų valdymo

prieigą (pvz., CMMI), pavyzdžių. Taip pat yra daug pavyzdžių projektų,
kurie buvo sėkmingai vykdyti taikant lanksčiąsias technikas. Remiantis

situacinio požiūrio vadybos principais, tinkamiausią prieigą nulemia

konkretaus projekto specifika, jo entropija ir kompleksiškumas.
Straipsnio autoriai siūlo kurti naują, adaptyvų ir situacinį IT

organizacijos modelį, kuris numato dinamišką unikalaus vadybinio

proceso kūrimą kiekvienam naujam projektui. Ši nauja prieiga turėtų
remtis ir tradicinių, ir lanksčiųjų IT standartų įvairove. Tokiu būdu būtų

pasiekiamas sinerginis efektas.

Sprendimai, kaip įgyvendinti kiekvieną konkretaus programinės
įrangos kūrimo projekto dalį, turėtų būti paremti unikalia projekto

specifika. Reikia atsižvelgti į tokius unikalius projekto parametrus kaip

klientų tipas, kūrimo komandos dydis, patirtis tam tikros technologijos
srityje, produkto tipas.

Straipsnyje autoriai taip pat analizuoja dvi pasirinktas prieigas:

Scrum (atstovauja „lengvąsias metodologijas”) ir CMMI (atstovauja

„sunkiąsias“ metodologijas). Tam, kad būtų galima geriau suprasti

hibridinę prieigą, straipsnyje pateikiamos trumpos abiejų metodologijų

charakteristikos, jų panašumai ir skirtumai. Scrum kaip pavyzdys buvo
pasirinktas todėl, kad tai populiariausiai ir geriausiai žinoma lanksčioji

metodologija. Taip pat svarbu buvo tai, kad dauguma Scrum elementų,

tokių kaip iteracijos, nuoseklus įrangos kūrimas, savivaldžios komandos
ir prisitaikymas prie besikeičiančių reikalavimų yra būdingos kitoms

lanksčiosioms metodologijoms.
CMMI yra proceso tobulinimo metodas, kuris leidžia integruoti

visus organizacijoje egzistuojančius procesus ir procedūras bei

identifikuoti potencialius trūkumus. CMMI modelis buvo sukurtas JAV
Gynybos departamento ir yra dažniausiai taikomas kompanijose, kurių

veikla susijusi su karinėmis struktūromis, valstybinėse agentūrose ar

didelėse korporacijose. Tokio tipo organizacijose svarbiausi veiksniai yra
konfidencialumas, saugumas, stabilumas, bet ne kaina ar gebėjimas

prisitaikyti prie besikeičiančių klientų poreikių. CMMI paprastai taikomas

didelės rizikos, ypač susijusios su kaina, srityse.

CMMI identifikavimas su „sunkiosiomis“ metodologijomis yra tam

tikras supaprastinimas. CMMI apibrėžia, kurie procesai turi būti

įgyvendinti ir kodėl, bet nenumato, kaip jie turėtų būti įgyvendinami.
Todėl iteratyvi prieiga ir „krioklio“ gyvavimo ciklo modelis visiškai

neprieštarauja CMMI. Tačiau CMMI buvo pasirinkta kaip „sunkioji“

metodologija, nes dažniausiai ji įgyvendinama kaip „krioklio“ procesas.
Scrum yra viena populiariausių ir geriausiai žinomų lanksčiųjų

metodologijų. Daug Scrum elementų, tokių kaip iteracijos, nuoseklus

įrangos kūrimas, savivaldžios komandos ir prisitaikymas prie
besikeičiančių reikalavimų yra būdingos kitoms lanksčiosioms

metodologijoms. Scrum bruožai turi bendrą tikslą: padaryti

bendradarbiavimo su klientu procesą sklandesniu. Lanksčiosios
metodologijos užsakovą traktuoja kaip partnerį, komandos narį. Jis

aktyviai dalyvauja kūrimo procese ir gali jį veikti viso projekto metu.

Pristatę CMMI modelį ir Scrum, autoriai identifikuoja skirtumus
tarp šių prieigų. Paprastai CMMI ir Scrum traktuojami kaip nesuderinami.

Autorių žinios ir patirtis rodo, kad tai nėra tiesa. Ir CMMI, ir Scrum

pasižymi nuosekliais tikslais: aukštesnė kokybė, laimingesnis klientas,
trumpesnis kelias į rinką. Abi prieigos gali būti labai efektyvios, atnešti

naudą projektui ir organizacijos veiklai.

Toliau straipsnyje analizuojama, kaip galima ištaisyti CMMI ir
Scrum trūkumus derinant abi prieigas. Autoriai pastebi, kad CMMI ir

lanksčiosios metodologijos derinimas viename procese gali ir padėti

tenkinti kliento poreikius, ir sukurti procesą, kuris tuo pačiu metu yra ir
brandus, ir dinamiškas. Tokiu būdu galime pasiekti sinergijos efekto ir

kurti lankstų procesą ant tvirto CMMI pagrindo, kurti modelių ir metodų

derinį su atrinktomis CMMI ir Scrum technikomis, siekiant išspręsti
specifines problemas.

Aiškindami, kaip šios dvi prieigos gali būti derinamos, autoriai

pirmiausiai nurodo, kaip Scrum gali būti papildytas geriausiomis CMMI
praktikomis. Pastebima, kad dabartiniai projektai priklauso nuo

specializuotų, techninių žinių turinčių inžinierių. Netgi techninį

išsilavinimą turintis projektų vadybininkas niekada neturės tiek žinių ir
patirties, kiek jo vadovaujamos komandos nariai ir negalės efektyviai

vertinti techninių užduočių.

CMMI neapibrėžia mechanizmų ir įrankių, naudingų žinių
darbuotojų savivaldai ir padedančių komunikuoti pažangą vadovybei.

Tokius įrankius galima rasti lanksčiųjų praktikų kontekste. Scrum

apibrėžia savivaldžias komandas, kuriose komandos nariai patys
pasiskiria užduotis, kontroliuoja progresą ir reguliariai apie jį

 A. Ziółkowski, T. Deręgowski. Hybrid Approach in Project

Social Sciences / Management – Mixing Capability Maturity Model Integration

Socialiniai mokslai. 2014. Nr. 3 (85) with Agile Practices

71

komunikuoja. Scrum tai pat suteikia adekvačius įrankius, leidžiančius

savivaldžių komandų koncepciją įgyvendinti.
Autoriai straipsnyje taip pat analizuoja Scrum trūkumų įveikimo,

taikant CMMI, galimybes. Daugelyje organizacijų, kurios taiko Scrum,

programinės įrangos kūrimo procesas yra reaktyvus. Tokios organizacijos
reaguoja į pastarojo laikotarpio klientų poreikius, bet gana dažnai

neįvertina ilgalaikės perspektyvos.

Labai svarbu tai, kad CMMI gali prisidėti standartizuojant ne tik
CMMI praktikas, bet ir iš Agile bei Lean metodologijų kilusias praktikas.

Scrum taikančios organizacijos nuolat atlieka tas pačias veiklas, tik jos

skirtos skirtingiems klientams ir projektams. Jos organizuoja tuos pačius
susitikimus ir naudojasi tais pačiais artefaktais. Kai organizacija taiko

tikslius, gerai apibrėžtus ir standartinius procesus, yra lengviau juos

išlaikyti sunkmečio sąlygomis. Jie gali komandai padėti laikytis standartų
net ir tada, kai patiriamas spaudimas taikyti apribojimus. Tai galioja

praktikoms ir įrankiams, susiformavusiems veikiant įvairiems šaltiniams:

CMMI, Scrum, XP ir Lean.

Apibendrinant atkreipiamas dėmesys, kad ir CMMI, ir Scrum turi

trūkumų. Egzistuojančių projektų analizė rodo, kad nei viena prieiga

negarantuoja projekto sėkmės. Autorių įsitikinimu, lygiagretus abiejų
prieigų taikymas toje pačioje organizacijoje ar projekte galėtų padidinti

projekto sėkmės galimybę. CMMI ir Scrum galėtų viena kitą papildyti ir

patobulinti įrangos kūrimo proceso lygmenį. To neįmanoma pasiekti, kai
šios prieigos taikomos atskirai. Autoriai taip pat pastebi, kad

tolimesniuose tyrimuose reikėtų pasiūlyti naują požiūrį į programinės
įrangos kūrimo projektų vadybą. Toks naujas požiūris, pagrįstas CMMI ir

Scrum, numato, kad kiekvienam naujam projektui bus kuriamas unikalus

valdymo procesas, pritaikytas unikaliems projekto poreikiams. Remiantis
tokiais projekto veiksniais, kaip tipas, trukmė, biudžetas, projekto

komandos dydis ir kt., bus parenkamos adekvačios CMMI proceso sritys,

kurios vėliau bus įgyvendinamos taikant lanksčiąsias technikas.
Reikšminiai žodžiai: projektų valdymas, standartai, sunkiosios ir

lengvosios metodologijos, CMMI, Agile, Scrum.

First received: June, 2014

Accepted for publication: September, 2014

